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Simulations of Edge-Plasmas and Lithium Core Pen-

tration for Low-Recycling LithiumWalls1 T.D. ROGNLIEN, M.E.
RENSINK, Lawrence Livermore National Lab, J.N. BROOKS, Argonne
National Lab | The use of lithium for divertor and wall surfaces
should substantially reduce the hydrogen particle recycling there. Con-
sequently, the hydrogenic edge-plasmas will have lower densities and
higher temperatures than the corresponding standard high-recycling
cases. The higher edge temperatures may reduce core turbulence. Sim-
ulation results are presented from the 2D UEDGE transport code to
quantify the changes in the edge-plasma as the recycling coeÆcient is
varied. Another important issue for lithium walls is the intrusion of
lithium ions from evaporation and sputtering into the core plasma. Self-
consistent hydrogen/lithium edge-plasma transport calculations are per-
formed to obtain the lithium concentration at the core-edge boundary
arising from evaporation (for liquid lithium) and sputtering. Factors
setting the allowable wall temperature are discussed. The near-plate
sputtering 
uxes from the divertor are obtained from the WBC test-
particle code, which are then used as input for UEDGE to model the
sputtered lithium transport in the remainder of the scrape-o� layer.2
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Lithium walls and divertor plates
can impact core performance

●      Possible improvements due to
       modification of core-edge boundary

- microturbulence and edge
  transport barriers

- MHD stability

- profiles and bootstrap current

●     Possible degradation of core power
      production due to impurity intrusion
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Outline

● Edge plasma model

●      High- and low-recycling hydrogen plasmas

● Wall impurity sources

● Divertor impurity sources

● Summary
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Features of the 2-D UEDGE transport code



0.1 x v   for
low recycling
(R=0.25)

||

||v   for
high recycling
(R=1)

0

4

8

Io
n 

pa
ra

lle
l v

el
oc

ity
 (

km
/s

)

0                4                 8               12

Poloidal distance (m) Divertor
plate

Top of
machine

200

400

0

E
le

ct
ro

n 
te

m
pe

ra
tu

re
 in

 S
O

L 
(e

V
)

Low recycling

High recycling

X-point

Ion parallel velocity

Electron temperature

Edge plasma changes
from low to high recycling



− −

Divertor and wall impurities have different paths
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Impurity influx sets liquid temperature limits 

Tokamak impurity transport from 2-D UEDGE code

Only cases with same wall and divertor material,
and no auxillary heating methods
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Issues
• Li self-sputtering
• core plasma contamination
• kinetic effects

Modeling codes UEDGE+VFTRIM+WBC
• realistic geometry and hydrogenic background
• angle and energy-dependent sputtering
• Monte Carlo impurity ion transport 
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Summary of impurity modeling

●      High- and low-recycling hydrogen plasmas

- poloidal flow enhanced for low recycling;
   major impact on impurities

● Wall impurity sources

- self-shielding by Li plasma helps limit
core impurities

- liquid Li wall temperatures are limited by
radiation/condensation instability

● Divertor impurity sources

- UEDGE/WBC coupling shows low Li core
concentration due to sputtering


